Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA.

نویسندگان

  • Z Liu
  • R G Franks
  • V P Klink
چکیده

The carpel is the female reproductive organ of flowering plants. In Arabidopsis, congenital fusion of two carpels leads to the formation of an enclosed gynoecium. The margins of the two fused carpels are meristematic in nature and give rise to placentas, ovules, septa, abaxial repla, and the majority of the stylar and stigmatic tissues. Thus, understanding how the marginal tissues are specified and identifying genes that direct their development may provide important insight into higher plant reproductive development. In this study, we show that LEUNIG and AINTEGUMENTA are two critical regulators of marginal tissue development. Double mutants of leunig aintegumenta fail to develop placentas, ovules, septa, stigma, and style. This effect is specific to the leunig aintegumenta double mutant and is not found in other double mutant combinations such as leunig apetala2 or aintegumenta apetala2. Additional analyses indicate that the absence of marginal tissues in leunig aintegumenta double mutants is not mediated by ectopic AGAMOUS. We propose that LEUNIG and AINTEGUMENTA act together to control the expression of common target genes that regulate cell proliferation associated with marginal tissue development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development.

The Arabidopsis (Arabidopsis thaliana) gynoecium, the female floral reproductive structure, requires the action of genes that specify positional identities during its development to generate an organ competent for seed development and dispersal. Early in gynoecial development, patterning events divide the primordium into distinct domains that will give rise to specific tissues and organs. The m...

متن کامل

TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis.

Mutations at the TOUSLED (TSL) protein kinase locus in Arabidopsis cause reduced differentiation of apical gynoecial tissues and eliminate the fusion of the style and septum. TSL expression becomes confined to the developing style by stage 13, where it may promote expansion of tissues. Double mutant analysis suggests that ETTIN interacts with TSL, possibly by restricting TSL expression to apica...

متن کامل

Interactions of CUP-SHAPED COTYLEDON and SPATULA Genes Control Carpel Margin Development in Arabidopsis thaliana

A characteristic feature of flowering plants is the fusion of carpels, which results in the formation of an enclosed gynoecium. In Arabidopsis thaliana, the gynoecium is formed by the fusion of two carpels along their margins, which also act as a meristematic site for the formation of internal structures such as ovules, the septum and transmitting tract. How gene interactions coordinate the fus...

متن کامل

AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS.

The Arabidopsis AINTEGUMENTA (ANT) gene has been shown previously to be involved in ovule development and in the initiation and growth of floral organs. Here, we show that ANT acts in additional processes during flower development, including repression of AGAMOUS (AG) in second whorl cells, promotion of petal epidermal cell identity, and gynoecium development. Analyses of ap2-1 ant-6 double mut...

متن کامل

Transcriptomic Characterization of a Synergistic Genetic Interaction during Carpel Margin Meristem Development in Arabidopsis thaliana

In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU) and AINTEGUMENTA (ANT) encode transcriptional regulators that are critical for the proper formation of ovules from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 2000